315 research outputs found

    Genetic diversity assessment in pea cultivars and lines using the SSR analysis

    Get PDF
    Background. Pea is the main leguminous crop in the Republic of Bashkortostan and widespread all over the world. The key role in the breeding of new pea cultivars is played by source material representing the phenotypic and genotypic diversity of Pisum sativum L., searched for in plant genetic resources collections. SSR markers are successfully used to study the DNA polymorphism of various genetic objects, including pea. However, the distribution of a number of microsatellite alleles in the genotypes of specific lines and cultivars of this valuable pulse crop remains practically unexplored.Materials and methods. Molecular genetic polymorphism was studied in 40 pea cultivar accessions of different ecological and geographical origin from the Vavilov Institute’s genebank of plant genetic resources or developed at regional breeding centers. Microsatellite analysis was performed using 5 SSR markers from the genomic library of microsatellites (Agrogene®, France).Results. All markers delivered good electrophoretic profiles and helped to amplify a number of alleles per locus varying from 2 (AB53) to 9 (AA355). The total number of alleles was 26, while the average number of alleles per locus was 5.2. The polymorphism information content (PIC) varied from 0.39 for locus AB53 to 0.82 for locus AA355, with the mean value of 0.60. The set of SSR markers used in the work made it possible to individualize each of the studied pea genotypes. The measured genetic distances were used to draw a dendrogram showing the distribution of genotypes according to their genetic relationship.Conclusion. Through studying the source material for pea breeding by the SSR analysis the data were obtained that provide additional information about the genetic structure of the collection and the polymorphism of the studied cultivar accessions. The results of genotyping pea cultivars and lines can be used for their genetic identification or to select parental pairs for hybridization

    Development of source material for pea breeding through chemical mutagenesis and evaluation of its genetic diversity using SSR markers

    Get PDF
    Background. Pea (Pisum sativum L.) is a valuable leguminous crop of worldwide importance. The main problem of modern plant breeding is a decrease in the genetic diversity of crops, including pea. One of the ways to increase genetic polymorphism is the use of chemically induced mutagenesis. Sodium azide (NaN3) is a highly effective chemical mutagen successfully used in mutation breeding to increase the productivity of cultivated plants and enrich them with new useful traits. We used it to obtain new pea breeding material.Materials and methods. Experiments were carried out to obtain pea mutants using sodium azide at the concentrations of 1, 5 and 10 mM and the exposure time of 3 and 9 h. Molecular genetic polymorphism of the М2 plants and the original cultivar was assessed using 10 SSR markers from the microsatellite genomic library (Agrogene®, France).Results. Optimal concentrations of sodium azide and the duration of seed treatment with it were identified: 1–5 mM for 3 h. Sixteen mutant populations were obtained; in ten of them a change in the leaf type was found. An analysis of the yield structure components revealed a significant superiority (p < 0.05) over the initial cultivar ‘Pamyati Khangildina’ in the mutant populations No. 1, No. 5, No. 9, No. 10, No. 15 and No. 16 in the number of seeds per pod, No. 9 and No. 16 in the weight of 1000 seeds, and No. 16 in the weight of seeds per plant. A dendrogram constructed on the basis of the SSR analysis data showed the degree of differences between the M2 populations of pea plants and the initial cultivar ‘Pamyati Khangildina’.Conclusion. The obtained mutant populations are planned to be used in pea breeding as sources of high seed numbers in pods, seed yield, seed weight per plant, and large seed size. A microsatellite analysis with 10 SSR markers revealed differences among the M2 mutant populations at the genetic level and made it possible to identify them

    ADDRESSING THE GROWING BURDEN OF NCDS: RETURN TO ALMA-ATA AND PRIMARY HEALTHCARE APPROACH

    Get PDF
    Last year was the 40th anniversary of the Declaration of Alma-Ata. The conference organized by WHO and the United Nations Children’s Fund proclaimed the ambitious goal - Health for All by the Year of 2000 and introduced the Primary Health Care approach that was considered as the means to achieve the goal. At the same time, some authors think that the main Alma-Ata deficiency was the fault to clearly define the difference between primary medical care and PHC approach, which involves universal coverage, inter-sectoral collaboration, community-based curative and preventive services. This short report discusses the excessive alcohol consumption and its dynamics throughout years in Kazakhstan and other post USSR countries, linking it to high rates of non-communicable diseases (NCDs) within these countries. It also emphasizes the importance of intersectoral approach in tackling excessive alcohol consumption that may well lead to an improved management of NCDs

    Analysis of methods for calculating the static characteristics of dense Coulomb systems

    Full text link
    [EN] In this paper, various methods for calculating static characteristics of plasma, such as HNC, MHNC, VMHNC, Percus-Yevik and analytical models were analyzed to satisfy a mathematical condition. Structural characteristics of a one-component plasma were reconstructed in a wide range of coupling parameters within the most requested various modern methods (HNC, MHNC, VMHNC, Percus-Yevik, and analytical models). All these methods were analyzed to fulfill the fundamental Cauchy ¿ Schwartz mathematical inequality. As a result a HNC method with the empirical expression of the bridge function and one of the recent methods for obtaining a structural factor based on a parameterized formula does not satisfy the inequality. The other methods for calculating static characteristics listed above beside the stated ones satisfy the condition. For the general analysis of a method, functional dependence was obtained expressing the Cauchy-Schwartz inequality. This dependence includes the frequency moments, which are defined within the framework of the method of moments. To satisfy the inequality, this relationship must be strictly positive. For each considered method of obtaining static structural characteristics, this relationship was calculated and analyzed. As a result, it was found that a number of methods do not satisfy the Cauchy-Schwartz inequality.Arkhipov, YV.; Askaruly, A.; Ashikbayeva, A.; Davletov, A.; Dubovtsev, D.; Santybayev, K.; Tkachenko Gorski, IM. (2018). Analysis of methods for calculating the static characteristics of dense Coulomb systems. Recent Contribution to Physics. 67(4):20-32. http://hdl.handle.net/10251/133778S203267

    Sphingomimetic multiple sclerosis drug FTY720 activates vesicular synaptobrevin and augments neuroendocrine secretion

    Get PDF
    Neurotransmission and secretion of hormones involve a sequence of protein/lipid interactions with lipid turnover impacting on vesicle trafficking and ultimately fusion of secretory vesicles with the plasma membrane. We previously demonstrated that sphingosine, a sphingolipid metabolite, promotes formation of the SNARE complex required for membrane fusion and also increases the rate of exocytosis in isolated nerve terminals, neuromuscular junctions, neuroendocrine cells and in hippocampal neurons. Recently a fungi-derived sphingosine homologue, FTY720, has been approved for treatment of multiple sclerosis. In its non-phosphorylated form FTY720 accumulates in the central nervous system, reaching high levels which could affect neuronal function. Considering close structural similarity of sphingosine and FTY720 we investigated whether FTY720 has an effect on regulated exocytosis. Our data demonstrate that FTY720 can activate vesicular synaptobrevin for SNARE complex formation and enhance exocytosis in neuroendocrine cells and neurons

    Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system

    Get PDF
    Indirect evidence suggests the increased production of reactive oxygen species (ROS) in migraine pathophysiology. In the current study we measured lipid peroxidation product in the rat cortex, trigeminal ganglia and meninges after the induction of cortical spreading depression (CSD), a phenomenon known to be associated with migraine aura, and tested nociceptive firing triggered by ROS in trigeminal nerves ex vivo. Application of KCl to dura mater in anesthetized rats induced several waves of CSD recorded by an extracellular electrode in the cortex. Following CSD, samples of cortex (affected regions were identified with blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI)), meninges from left and right hemispheres and trigeminal ganglia were taken for biochemical analysis. We found that CSD increased the level of the lipid peroxidation product malondialdehyde (MDA) in the ipsilateral cerebral cortex and meninges, but also in both ipsi- and contralateral trigeminal ganglia. In order to test the pro-nociceptive action of ROS, we applied the mild oxidant hydrogen peroxide to isolated rat hemiskull preparations including preserved trigeminal innervations. Application of hydrogen peroxide to meninges transiently enhanced electrical spiking activity of trigeminal nerves showing a pro-nociceptive action of ROS. In the presence of hydrogen peroxide trigeminal nerves still responded to capsaicin by burst of spiking activity indicating integrity of neuronal structures. The action of hydrogen peroxide was mediated by TRPA1 receptors as it was abolished by the specific TRPA1 antagonist TCS-5861528. Using dorsal root ganglion sensory neurons as test system we found that hydrogen peroxide promoted the release of the migraine mediator calcitonin gene-related peptide (CGRP), which we previously identified as a trigger of delayed sensitization of trigeminal neurons. Our data suggest that, after CSD, oxidative stress spreads downstream within the trigeminal nociceptive system and could be involved in the coupling of CSD with the activation of trigeminovascular system in migraine pathology. © 2013 IBRO

    Lipid Metabolites Enhance Secretion Acting on SNARE Microdomains and Altering the Extent and Kinetics of Single Release Events in Bovine Adrenal Chromaffin Cells

    Get PDF
    Lipid molecules such as arachidonic acid (AA) and sphingolipid metabolites have been implicated in modulation of neuronal and endocrine secretion. Here we compare the effects of these lipids on secretion from cultured bovine chromaffin cells. First, we demonstrate that exogenous sphingosine and AA interact with the secretory apparatus as confirmed by FRET experiments. Examination of plasma membrane SNARE microdomains and chromaffin granule dynamics using total internal reflection fluorescent microscopy (TIRFM) suggests that sphingosine production promotes granule tethering while arachidonic acid promotes full docking. Our analysis of single granule release kinetics by amperometry demonstrated that both sphingomyelinase and AA treatments enhanced drastically the amount of catecholamines released per individual event by either altering the onset phase of or by prolonging the off phase of single granule catecholamine release kinetics. Together these results demonstrate that the kinetics and extent of the exocytotic fusion pore formation can be modulated by specific signalling lipids through related functional mechanisms

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Double-binding botulinum molecule with reduced muscle paralysis : evaluation in in vitro and in vivo models of migraine

    Get PDF
    With a prevalence of 15%, migraine is the most common neurological disorder and among the most disabling diseases, taking into account years lived with disability. Current oral medications for migraine show variable effects and are frequently associated with intolerable side effects, leading to the dissatisfaction of both patients and doctors. Injectable therapeutics, which include calcitonin gene–related peptide–targeting monoclonal antibodies and botulinum neurotoxin A (BoNT/A), provide a new paradigm for treatment of chronic migraine but are effective only in approximately 50% of subjects. Here, we investigated a novel engineered botulinum molecule with markedly reduced muscle paralyzing properties which could be beneficial for the treatment of migraine. This stapled botulinum molecule with duplicated binding domain—binary toxin-AA (BiTox/AA)—cleaves synaptosomal-associated protein 25 with a similar efficacy to BoNT/A in neurons; however, the paralyzing effect of BiTox/AA was 100 times less when compared to native BoNT/A following muscle injection. The performance of BiTox/AA was evaluated in cellular and animal models of migraine. BiTox/AA inhibited electrical nerve fiber activity in rat meningeal preparations while, in the trigeminovascular model, BiTox/AA raised electrical and mechanical stimulation thresholds in Aδ- and C-fiber nociceptors. In the rat glyceryl trinitrate (GTN) model, BiTox/AA proved effective in inhibiting GTN-induced hyperalgesia in the orofacial formalin test. We conclude that the engineered botulinum molecule provides a useful prototype for designing advanced future therapeutics for an improved efficacy in the treatment of migraine

    Short Stat5-Interacting Peptide Derived from Phospholipase C-β3 Inhibits Hematopoietic Cell Proliferation and Myeloid Differentiation

    Get PDF
    Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN). Our recent study found that phospholipase C (PLC)-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT) accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998) suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies
    corecore